ОПН-КР ОПН-РТ

ОГРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЙ НЕЛИНЕЙНЫЕ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

эл. почта: tdv@nt-rt.ru || сайт: http://teks.nt-rt.ru

СОДЕРЖАНИЕ

BB	ЕДЕНИЕ	2
1.	назначение	2
2.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	3
3.	УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ	7
4.	ПОДГОТОВКА К РАБОТЕ И ТРЕБОВАНИЯ К МОНТАЖУ	9
5.	УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ	10
6.	МЕРЫ БЕЗОПАСНОСТИ	11
7.	КОМПЛЕКТНОСТЬ И МАРКИРОВКА	11
8.	ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	11
9.	ГАРАНТИИ ПРОИЗВОДИТЕЛЯ	11
ПР	ИЛОЖЕНИЕ: ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ	. 12

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации (РЭ) распространяется на ограничители перенапряжений нелинейные серий ОПН-КР/TEL и ОПН-РТ/TEL (далее именуемые «ОПН-КР/TEL», «ОПН-РТ/TEL» или «ограничители»).

Ограничители соответствуют техническим условиям ТУ 36U - 002 - 57002326 - 2003 и ГОСТ Р 52725.

Руководство по эксплуатации предназначено для персонала эксплуатационных организаций, содержит сведения по устройству и принципу действия ограничителей, правила использования по назначению и техническому обслуживанию.

1. НАЗНАЧЕНИЕ

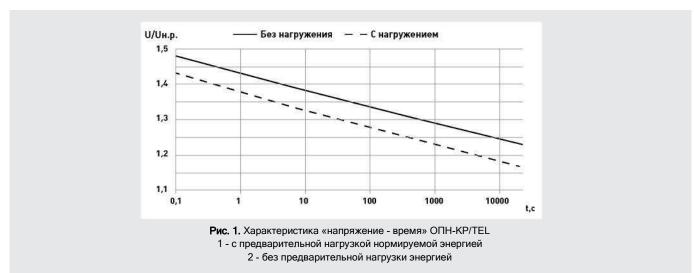
- 1.1. Ограничители перенапряжений нелинейные (ОПН) серии ОПН-КР/ТЕL, ОПН-РТ/ТЕL предназначены для использования в качестве основных средств защиты электрооборудования станций и сетей среднего класса напряжения переменного тока промышленной частоты от 68 до 62 Гц от коммутационных и грозовых перенапряжений.
- ОПН-КР/ТЕL предназначены для надежной защиты электрооборудования в сетях класса напряжения от 6 до 10 кВ с изолированной или компенсированной нейтралью. Рекомендуются для использования в распределительных сетях для защиты трансформаторов и двигателей.
- ОПН-РТ/TEL предназначены для гарантированной защиты наиболее ответственного электрооборудования в сетях класса напряжения от 3 до 10 кВ с изолированной или компенсированной нейтралью. ОПН-РТ/TEL рекомендуется применять в условиях частых и интенсивных воздействий перенапряжений для защиты трансформаторов изоляции кабельных сетей, электродуговых печей, электрических генераторов, двигателей И ответственного оборудования. Ограничители OnH-PT/TEL-3 разработаны специально для защиты выпрямителей тяговых подстанций электрифицированных железных дорог и другого электрооборудования класса напряжения 3 кВ.

1.2. Расшифровка условного обозначения ОПН:

	OTH-XX/TEL-X/X YXIIZ
Ограничитель	. Т
Перенапряжений	
Нелинейный	
Наименование серии ОПН	
Фирменная марка компании	
Класс напряжения сети , кВ	
Наибольшее длительно допустимое рабочее напряжение , кВ $\ _$	
Климатическое исполнение по ГОСТ 15150	
Категория размещения по ГОСТ 15150	

1.3. ОПН-КР/ТЕL, ОПН-РТ/ТЕL предназначены для эксплуатации на высоте над уровнем моря до 1 000 м при температуре окружающей среды от минус 60 °C до плюс 55 °C для внутренней установки (УХЛ2 по ГОСТ 15150). По стойкости к механическим воздействиям ограничители

соответствуют группе условий эксплуатации Мб по ГОСТ 17516.1. Ограничители длительно выдерживают механическую нагрузку до 300 H от тяжения провода, в направлении перпендикулярном его вертикальной оси.


2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1. Технические характеристики ОПН-КР/ТЕL представлены в **Табл. 1.1**.

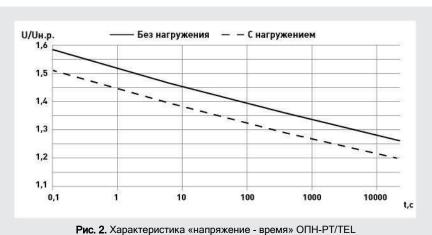
Таблица 1.1. Технические характеристики ОПН-КР/TEL

			OПH-KP/TEL		
Наименование параметра	6/6.0	6/6.9	10/10.5	10/11.5	10/12.0
Класс напряжения сети, кВ	6	6	10	10	10
Наибольшее длительно допустимое рабочее напряжение, кВ , действующее значение	6.0	6.9	10.5	11.5	12.0
Классификационное напряжение промышленной частоты, кВ, не менее, действующее значение, при амплитуде классификационного тока через ОПН 2.0 мА	7.4	8.5	12.9	14.1	14.8
Номинальное напряжение, кВ, действующее значение	7.5	8.6	13.1	14.4	15.0
Класс разряда линии	I	I	I	I	I
Номинальный разрядный ток 8/20 мкс, кА	10	10	10	10	10
Пропускная способность, А	300	300	300	300	300
Остающееся напряжение, кВ, не более:					
– при коммутационном импульсе тока					
125 А, 30/60 мкс	14.8	15.9	24.2	26.2	28.9
250 А, 30/60 мкс	15.2	16.3	24.8	26.9	29.7
500 А, 30/60 мкс	15.7	16.9	25.7	27.8	30.7
– при грозовом импульсе тока					
5000 A, 8/20 мкс	19.0	20.4	31.1	33.7	37.3
10000 А, 8/20 мкс	20.5	22.0	33.5	36.3	40.1
20000 А, 8/20 мкс	23.2	24.9	38.0	41.1	45.5
– при крутом импульсе тока					
10000 А, 1/10 мкс	21.3	22.9	34.9	37.8	41.7
Ток утечки, мА, не более, действующее значение	1.0	1.0	1.0	1.0	1.0
Максимальная амплитуда импульса большого тока 4/10 мкс, кА	100	100	100	100	100
Удельная энергия, кДж/кВ	3.4	3.4	3.4	3.4	3.4
Рассеиваемая энергия ОПН (2 импульса), кДж, не менее	40.8	46.9	71.4	78.2	81.6
Ток взрывобезопасности, кА	20	20	20	20	20
			•	•	•

2.3. Характеристика «напряжение - время» ОПН-КР/ТЕL приведена в относительных единицах по отношению к наибольшему длительно допустимому рабочему напряжению 11н.р. в **Табл. 1.2.**

Значения с предварительным нагружением соответствуют испытанию ограничителя после предварительного нагрева до температуры 60 °C и воздействию одного импульса большого тока 6/10 мкс с

Таблица 1.2. Характеристика «напряжение - время» ОПН-КР/ТЕL


Параметр	метр Без нагружения									
U/UH.p.	1,48	1,43	1,39	1,38	1,37	1,34	1,28	1,26	1,25	1,23
t, c	0,1	1	8	10	20	60	1200	3000	7200	21600
Параметр	Параметр С нагружением									•
U/UH.p.	1,43	1,38	1,33	1,33	1,32	1,29	1,23	1,21	1,19	1,17
t, c	0,1	1	8	10	20	60	1200	3000	7200	21600

2.4. Технические характеристики ОПН-РТ/ТЕL представлены в **Табл. 1.3.**

Таблица 1.3. Технические характеристики ОПН-РТ/TEL

			OПH-PT/TEL		
Наименование параметра	ЗМ.О	6/6.9	6/7.2	10/10.5	10/11.5
- Класс напряжения сети, кВ	3	6	6	10	10
Наибольшее длительно допустимое рабочее напряжение, кВ, действующее значение	4.0	6.9	7.2	10.5	11.5
Классификационное напряжение промышленной частоты, кВ, не менее, действующее значение, при амплитуде классификационного тока через ОПН 2.0 мА	4.9	8.5	8.9	12.9	14.1
Номинальное напряжение, кВ, действующее значение	5.0	8.6	9.0	13.1	14.4
Класс разряда линии	10	10	10	10	10
Номинальный разрядный ток 8/20 мкс, кА	III	III	III	III	III
Пропускная способность, А	760	760	760	760	760
Остающееся напряжение, кВ, не более:					
– при коммутационном импульсе тока					
500 А, 30/60 мкс	10.3	17.5	17.7	26.6	28.3
1000 А, 30/60 мкс	10.6	18.1	18.3	27.5	29.2
2000 А, 30/60 мкс	11.1	19.0	19.1	28.8	30.6
– при грозовом импульсе тока					
5000 А, 8/20 мкс	12.2	20.9	21.1	31.7	33.7
10000 А, 8/20 мкс	13.0	22.2	22.4	33.7	35.8
20000 А, 8/20 мкс	14.6	24.8	25.0	37.7	40.1
– при крутом импульсе тока					
10000 A, 1/10 MKC	13.7	23.4	23.6	35.6	37.8
Ток утечки, мА, не более, действующее значение	1.0	1.0	1.0	1.0	1.0
Максимальная амплитуда импульса большого тока 4/10 мкс, кА	100	100	100	100	100
Удельная энергия, кДж/кВ	4.6	4.6	4.6	4.6	4.6
Рассеиваемая энергия ОПН (2 импульса), кДж, не менее	36.8	63.5	66.2	96.6	105.8
Ток взрывобезопасности, кА	20	20	20	20	20

2.5. Характеристика «напряжение - время» ОПН-РТ/ТЕL представлена на рис. 2.

1 - с предварительной нагрузкой нормируемой энергией
2 - без предварительной нагрузки энергией

2.6. Характеристика «напряжение - время» **ОПН-РТ/ТЕL** приведена в относительных единицах по отношению к наибольшему длительно допустимому рабочему напряжению 11н.р. в **Табл. 1.3.**

Значения с предварительным нагружением соответствуют испытанию ограничителя после предварительного нагрева до температуры 60 °C и нагружения двумя прямоугольными импульсами тока длительностью 2000 мкс и амплитудой 760 А.

Таблица 1.3. Характеристика «напряжение - время» ОПН-РТ/ТЕL

Параметр	раметр Без нагружения									
U/UH.p.	1,58	1,52	1,47	1,45	1,44	1,41	1,33	1,31	1,29	1,26
t, c	0,1	1	8	10	20	60	1200	3000	7200	21600
Параметр	Параметр С нагружением									
U/UH.p.	1,51	1,45	1,41	1,39	1,37	1,34	1,27	1,25	1,22	1,12
t, c	0,1	1	8	10	20	60	1200	3000	7200	21600

3. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

3.1. Конструкция ОПН-КР/ТЕL, ОПН-РТ/ТЕL представлена на **рис. 3.**

Габаритные и присоединительные размеры приведены на **рис. 4 - 7** и в **Табл. 1.4.**

- **3.2.** Ограничители состоят из последовательно соединенных металлооксидных варисторов, размещенных внутри трекингостойкого полимерного корпуса. По торцам корпус снабжен контактными выводами (электродами).
- **3.3.** Для крепления ОПН-КР/TEL, ОПН-РТ/TEL, а также для присоединения потенциальных и заземляющих проводников, предназначены отверстия с резьбой М10 глубиной 10 мм, выполненные в контактных выводах.
- 3.4. В нормальном рабочем режиме ток через ограничитель носит емкостной характер и составляет десятые доли миллиампера. При возникновении в сети перенапряжений сопротивление ОПН-КР/ТЕL, ОПН-РТ/ТЕL резко падает до единиц Ом, варисторы ограничителя переходят в проводящее состояние и ограничивают дальнейшее нарастание перенапряжения до уровня, безопасного для изоляции защищаемого электрооборудования.

При этом ограничитель поглащает энергию импульса перенапряжения, которая преобразуется в тепловую энергию и затем рассеивается в окружающую среду. Когда волна перенапряжения проходит, ограничитель вновь возвращается в непроводящее состояние. Время перехода ограничителя в проводящее состояние составляет единицы наносекунд, что позволяет эффективно ограничивать высокочастотные перенапряжения.

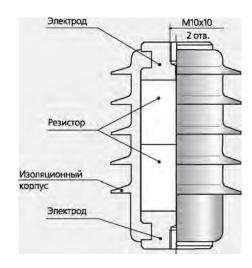
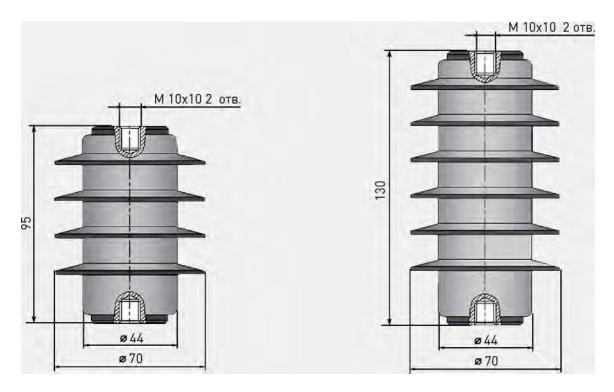
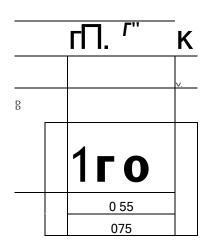



Рис.3. Конструкция ОПН-КР/TEL, ОПН-РТ/TEL


Таблица 1.4. Габаритные и присоединительные размеры

Обозначение	Класс напряжения сети, кВ	Длина пути утечки не менее, мм	Высота не более, мм	Масса, кг
ОП H-KP/TEL-6/6.0 УХЛ2	6	175	95	0,55
ОП H-KP/TEL-6/6.9 УХЛ2	6	175	95	0,55
ОП H-KP/TEL-10/10.5 УХЛ2	10	250	130	0,8
ОП Н-КР/ТЕL-10/11.5 УХЛ2	10	250	130	0,8
ОП Н-КР/ТЕL-10/12.0 УХЛ 2	10	250	130	0,8
ОПН-РТ/TEL-3/40 УХЛ2	3	145	100	0,8
ОПН-РТ/TEL-6/6.9 УХЛ2	6	145	100	0,8
ОПН-РТ/TEL-6/7.2 УХЛ2	6	145	100	0,8
ОПН-РТ/TEL-10/10.5 УХЛ2	10	215	U0	1,3
ОПН-РТ/TEL-10/11.5 УХЛ2	10	215	U0	1,3

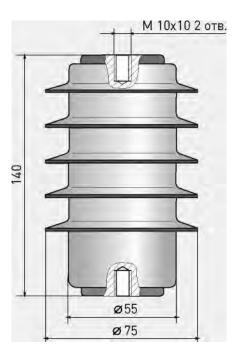

Рис. Л. Ограничители ОПН-КР/ТЕL-6/6.0 УХЛ2 ОПН-КР/ТЕL-6/6.9 УХЛ2

Рис. 5. Ограничители ОПН-КР/ТЕL-10/10.5 УХЛ2 ОПН-КР/ТЕL-10/11.5 УХЛ2 ОПН-КР/ТЕL-10/12.0 УХЛ2

М 10х10 2 отв.

Рис. 6. Ограничители ОПН-РТ/ТЕL-3/4-.0 УХЛ2 ОПН-РТ/ТЕL-6/6.9 УХЛ2 ОПН-РТ/ТЕL-6/7.2 УХЛ2

Рис. 7. Ограничители ОПН-РТ/TEL-10/10.5 УХЛ2 ОПН-РТ/TEL-10/11.5 УХЛ2

4. ПОДГОТОВКА К РАБОТЕ И ТРЕБОВАНИЯ К МОНТАЖУ

- **4.1.** После распаковки ОПН-КР/ТЕL, ОПН-РТ/ТЕL необходимо:
- проверить комплектность и провести сравнение маркировки на изделии с обозначением типа, указанным в паспорте;
- произвести внешний осмотр, убедиться в отсутствии видимых повреждений корпуса ограничителя, очистить изоляцию от пыли и грязи.
- **4.2.** Перед монтажом ОПН-КР/TEL, ОПН-РТ/TEL следует удалить пыль и загрязнения. Очистку загрязненных поверхностей следует производить сухой ветошью, не оставляющей волокон, или промывать мыльным раствором. Места сильного загрязнения очищать тампоном, смоченным спиртом.

ПРИМЕНЕНИЕ МАСЕЛ, БЕНЗИНА, БЕНЗОЛА, АЦЕТОНА, ЛЮБОЙ НАЖДАЧНОЙ БУМАГИ И МЕТАЛЛИЧЕСКИХ ЩЕТОК НЕ ДОПУСКАЕТСЯ!

- **4.3.** Условия эксплуатации в части воздействия климатических и внешних механических факторов указаны в разделе 1. При этом:
- рабочее положение ОПН-КР/TEL, ОПН-РТ/TEL в пространстве любое, **рис. 8**;
- для исключения неучтенных тяжений линейных (фазных) проводников, вызываемых их температурными расширением и сжатием, а также электродинамическими воздействиями, присоединение линейного вывода ограничителя к токоведущим частям требуется выполнять гибким неизолированным проводником сечением 4-10 мм², обеспечивая при этом необходимую слабину провода;
- для подключения ограничителя к контуру заземления необходимо использовать неизолированный провод сечением 4-10 мм 2 или шину.
- **4.4.** Ограничители не требуют применения специальных крепежных устройств и устанавливаются с помощью болтов (шпилек) М10. Болты (шпильки) для присоединения ограничителя к электрической цепи должны быть выполнены из металла, стойкого к коррозии, или покрыты металлом, предохраняющим их от коррозии, и не должны иметь поверхностной окраски. Вокруг болта (шпильки)
- должна быть контактная площадка для присоединения проводника (шины). Площадка должна быть защищена от коррозии и также не иметь поверхностной окраски. Допускается обеспечивать требуемую поверхность соприкосновения в соединении при помощи шайб. Необходимо принять меры против возможного ослабления контактов между проводником (шиной) и болтом (шпилькой), используя контргайки или пружинные шайбы.
- **4.5.** Момент затяжки болтов при подсоединении фазного и заземляющего проводников ОПН-КР/TEL, ОПН-РТ/TEL должен составлять 30 Нм.

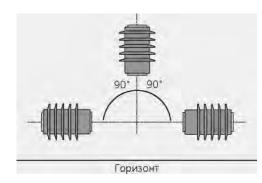
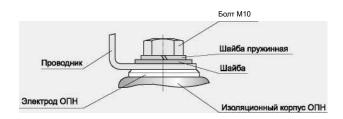
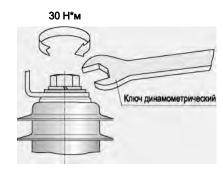




Рис. 8. Рабочее положение ОПН-КР/ТЕL, ОПН-РТ/ТЕL в пространстве.

Рис. 9. Присоединение фазного проводника к ОПН-КР/TEL, ОПН-РТ/TEL и момент затяжки болтов.

- **4.6.** Длина фазного проводника ОПН-КР/TEL, ОПН-РТ/ TEL должна быть выбрана так, чтобы исключить внешний подогрев ограничителя со стороны токоведущих шин выше $55\,^{\circ}$ C, и находиться в диапазоне от $50\,$ до $400\,$ мм , **рис. 10.**
- **4.7.** Во всех случаях необходимо стремиться к минимизации расстояния между ОПН и защищаемым оборудованием. Типовые рекомендации по применению Ограничителей для защиты двигателей и трансформаторов от коммутационных перенапряжений для типичных условий эксплуатации приведены в **Табл. 1.5.**
- **4.8.** При монтаже ОПН-КР/TEL, ОПН-РТ/TEL должен быть обеспечен надежный электрический контакт между болтом заземления ограничителя и заземленным основанием.

Вид нагрузки		Двигатель		Трансформа	тор	
Длина фидера	До 50 м	Свы	ше 50 м	До 300 м	Свыше 300 м	
Способ установки	Фаза-земля	Параллельно контактам выключателя	Фаза-земля	Фаза-земля	Не требуется	
Тип ограничителя	ОПН-РТ/TEL 6/6.9 или 10/11.5	ОПН-KP/TEL 6/6.0 или 10/10.5	ОПН-PT/TEL 6/6.9 или 10/11.5	ОПН-PT/TEL 6/6.9 или 10/11.5	Не требуется	
Место установки	Линейный отсек КРУ за трансформатором тока	В ячейке	Рядом с двигателем по схеме «Фаза-земля»	Линейный отсек КРУ за трансформатором тока	Не требуется	

Таблица 1.5. Типовые рекомендации по применению ОПН-КР/TEL, ОПН-РТ/TEL для защиты двигателей и трансформаторов

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

5.1. ОП H- KP/TEL, ОП H- PT/TEL не требуют проведения приемо-сдаточных испытаний до и после монтажа, а также периодических операций и обслуживания в процессе эксплуатации.

Вместе с тем, по желанию потребителя могут быть проведены следующие виды операций:

- измерение сопротивления ОПН-КРЯЕД, ОПН-РТ/TEL мегомметром на напряжение 2,5 кВ. Значение сопротивления, измеренного между выводами ограничителя, должно быть не менее:
 - 1 000 МОм для ОПН класса напряжения сети 3 кВ; 2 000 МОм для ОПН класса напряжения сети 6 кВ; 5 000 МОм для ОПН класса напряжения сети 10 кВ.
- очистка внешней поверхности изоляции ограничителя, согласно п.4.2
- измерение действующего значения тока утечки по схеме, приведенной на рис. 11.

Указанное испытание должно проводиться на чистых и сухих ограничителях, отсоединенных от сети, при температуре окружающей среды плюс 20±15 °C.

Испытательное напряжение переменного тока (действующее значение) должно быть равно наибольшему длительно допустимому рабочему напряжению ограничителя.

Действующее значение тока утечки для ОПН-КР/ТЕL, ОПН-РТ/ТЕL должно быть не более 1,0 мА.

5.2. Ограничители ОПН-КР/TEL, ОПН-РТ/TEL не подлежат разборке и ремонту эксплуатирующими организациями.

Техническое обслуживание проводится с периодичностью, установленной «Правилами технической эксплуатации электроустановок потребителей» для разрядников. При этом необходимо:

Рис. 10. Присоединение OПH/TEL к токоведущим шинам.

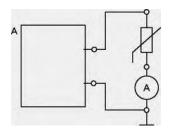


Рис. 11. Схема измерения тока утечки.

Обозначения:

А - регулируемый источник напряжения переменного тока (например, аппарат АИД - 70 или его аналог, допускающий плавныйподъем напряжения с измерением его действующего значения];

FV - ограничитель;

РА - миллиамперметр переменного тока класса точности не ниже 4,0 (например, приборы Ц4313, Ц4360].

 провести наружный осмотр ограничителя на предмет выявления механических повреждений и признаков повреждения изоляции;

проверить затяжку болтовых и контактных соединений.

6. МЕРЫ БЕЗОПАСНОСТИ

- **6.1.** При монтаже и эксплуатации ОПН-КР/ТЕL и ОПН-РТ/ТЕL персонал должен соблюдать требования настоящего Руководства, «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей».
- **6.2.** При периодических испытаниях изоляции электрооборудования распределительных устройств повышенным напряжением ограничители должны отключаться с

принятием мер, исключающих их пробой.

6.3. Ограничители перенапряжений ОПН-КР/ТЕL, ОПН-РТ/ТЕL не содержат компонентов, вредных или опасных для здоровья человека и окружающей среды. Нарушение целостности внешней изоляции корпуса ограничителя, которое может иметь место при эксплуатации или утилизации ограничителя, не опасно и не требует проведения специальных мероприятий. Никаких особых мер по утилизации ограничителей не требуется.

7. КОМПЛЕКТНОСТЬ И МАРКИРОВКА

- **7.1.** В комплект поставки должны входить следующие документы и изделия:
 - комплект ограничителей одного наименования -3 шт.;
 - паспорт 1 шт.;
 - руководство по эксплуатации 1шт. на каждую партию.
- **7.2.** Ограничители маркированы по ГОСТ Р 52725 с ука занием:
 - предприятия-изготовителя;
 - условного обозначение ограничителя;
 - номинальной частоты в герцах;
 - года изготовления;
 - номинального разрядного тока;
 - заводского номера.

8. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

8.1. Условия транспортирования ограничителей в части воздействия механических факторов соответствуют группе Ж по ГОСТ 23216.

Условия транспортирования и хранения на допустимый срок сохраняемости в части воздействия климатических факторов внешней среды - по условиям хранения 2(C) ГОСТ 15150.

9. ГАРАНТИИ ПРОИЗВОДИТЕЛЯ

Срок службы ОПН-КР/TEL, OnH-PT/TEL-3O лет. Гарантийный срок службы ОПН-КР/TEL, ОПН-РТ/TEL- 20 лет со дня отгрузки. ленных настоящим руководством и теряют свою силу в случае:

- истечения гарантийного срока;
- не соблюдения требований к монтажу и эксплуатации, установленных настоящим РЭ;
- нанесения ограничителю повреждений вследствие внешнего термического или механического воздействия.

Указанные гарантийные обязательства действительны при соблюдении потребителем требований, установ-

ПРИЛОЖЕНИЕ 1. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Ограничитель перенапряжений нелинейный (ОПН) аппарат, предназначенный для защиты изоляции электрооборудования от грозовых и коммутационных перенапряжений. Представляет собой последовательно и/или параллельно соединенные металлооксидные варисторы без каких-либо последовательных параллельных искровых промежутков, заключенные в изоляционный корпус.

Металлооксидный варистор-единичный комплектующий элемент ОПН, имеющий нелинейную вольтамперную характеристику.

Наибольшее длительно допустимое рабочее напряжение ОПН (UHP) - наибольшее действующее значение напряжения промышленной частоты, которое может быть приложено непрерывно к ОПН в течение всего срока его службы, и не приводит к повреждению или термической неустойчивости ОПН при нормированных воздействиях.

Импульс - униполярная волна напряжения или тока, возрастающая без заметных колебаний с большой скоростью до максимального значения и уменьшающаяся, обычно с меньшей скоростью, до нуля с небольшими, если это будет иметь место, переходами в противоположную полярность.

Параметрами, определяющими импульсы напряжения или тока, являются полярность, максимальное значение (амплитуда), условная длительность фронта и условная длительность импульса.

Обозначение формы импульса - комбинация двух чисел в микросекундах, первое из которых обозначает длительность фронта (Т1), а второе - длительность импульса (Т2). Эта комбинация записывается в виде Т1/Т2 (знак не имеет математического значения).

Импульс тока большой длительности (прямоугольный импульс) - прямоугольный импульс, который быстро возрастает до максимального значения, остается практически постоянным в течение некоторого периода времени, а затем быстро падает до нуля. Параметрами, прямоугольный определяющими импульс, являются полярность, максимальное (амплитудное) значение и длительность.

Крутой импульс тока - импульс тока с условной длительностью фронта 1 мкс, (измеренные значения должны находиться в пределах от 0,9 до 1,1мкс) и условной длительностью до полуспада не более 20 мкс.

Грозовой импульс тока - импульс тока 8/20мкс при длительности фронта импульса в диапазоне от 7 до 9 мкс и длительности импульса в диапазоне от 18 до 22 мкс.

Номинальный разрядный ток ОПН (1H)-максимальное (амплитудное) значение грозового импульса тока 8/20 мкс, используемое для классификации ОПН.

Импульс большого тока ОПН - максимальное (амплитудное) значение разрядного тока, имеющего форму импульса 4/10 мкс, который используется для проверки устойчивости ограничителя к прямым разрядам молнии.

Коммутационный импульс тока ОПН - максимальное (амплитудное) значение тока с условной длительностью фронта не менее 30, но не более 100 мкс и условной длительностью импульса, равного удвоенному времени условного фронта импульса.

Пропускная способность ОПН (1ПР) - нормируемое изготовителем максимальное значение прямоугольного импульса тока длительностью 2000 мкс (ток пропускной способности). ОПН должен выдержать 18 таких воздействий с принятой последовательностью их приложения без потери рабочих качеств.

Остающееся напряжение ОПН (UOCT) - максимальное значение напряжения на ограничителе при протекании через него импульсного тока с данной амплитудой и формой импульса.

Характеристика «напряжение-время» - выдерживаемое напряжение промышленной частоты в зависимости от времени его приложения к ОПН. Показывает максимальный промежуток времени, в течение которого к ОПН может быть приложено напряжение промышленной частоты, превышающее UHP, не вызывая повреждения или термической неустойчивости.

Удельная энергия - рассеиваемая ограничителем электрическая энергия олученная им при приложении одного импульса тока пропускной способности, отнесённая к величине наибольшего длительно допустимого рабочего напряжения.

Термическая неустойчивость ОПН - состояние, при котором выделяющаяся в ОПН мощность превышает его способность рассеивания тепла, что приводит к росту температуры ограничителя, потере его тепловой стабильности и разрушению.

Взрывобезопасность - отсутствие взрывного разрушения при внутреннем повреждении ОПН или разрушение ОПН с разлетом осколков в нормируемой зоне.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93