ETALON

КОМПЛЕКТНОЕ РАСПРЕДЕЛИТЕЛЬНОЕ УСТРОЙСТВО на базе Sec10_Etalon_1

Версия 3.0

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Архангельск (8182)63-90-72 **А**стана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 эл. почта: tdv@nt-rt.ru || сайт: http://teks.nt-rt.ru

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 **У**льяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

СОДЕРЖАНИЕ

1.	введение	3
2.	ПРИНЯТЫЕ СОКРАЩЕНИЯ	3
3.	ОБЩИЕ СВЕДЕНИЯ	4
	3.1. Состав продукта и структура условных обозначений	4
	3.2. Технические характеристики	6
	3.3. Конструкция	7
	3.3.1. Конструкция шкафа TER_SP15_Etalon_1	
	3.3.2. Модуль высоковольтный ISM15_Mono_1	10
	3.3.3. Трехфазный комбинированный датчик тока и напряжения VCS_Etalon_2	12
	3.3.4. Кабельный отсек	12
	3.3.5. Релейный отсек	
	3.4. Маркировка и пломбирование	14
	3.4.1. Маркировка шкафа	
	3.4.2. Пломбирование модуля высоковольтного	
	3.4.3. Пломбирование модуля управления	
	3.4.4. Пломбирование панели управления	
	3.4.5. Пломбирование трехфазного комбинированного датчика тока и напряжения	
4.	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	16
	4.1. Интерфейсы управления	16
	4.1.1. Общие сведения	
	4.1.2. Панель управления	
	4.1.3. TELARM	
	4.1.4. Интерфейс дискретных входов/выходов	
	4.2. Оперативные переключения	17
	4.2.1. Ручное отключение	
	4.2.2. Штатное отключение фидера	
	4.2.3. Включение фидера	
	4.2.4. Заземление фидера	
	4.2.5. Обеспечение воздушного изоляционного промежутка	
	4.2.6. Подключение фидера к сборным шинам	
	4.3. Изменение настроек	19
	4.3.1. Изменение настроек РЗиА19	
	4.3.2. Изменение системных настроек	
	4.3.3. Изменение настроек передачи данных в SCADA	
	4.3.3.1. Общие положения	
	4.3.3.2. Основные настройки SCADA	
	4.3.3.3. Настройки Modbus	
	4.3.3.4. Настройки DNP3	
	4.3.3.5. Изменение настроек передачи данных TELARM Dispatcher	
	4.3.3.6. Изменение настроек дискретных входов/выходов	

	.4. Работа с журналами	32
	.5. Возможные неисправности и способы их устранения	32
5.	ІРОВЕРКА И СЕРВИСНЫЕ ОПЕРАЦИИ	32
	.1. Сервисные операции с главными цепями	
	5.1.1. Измерение переходных сопротивлений главных цепей	
	5.1.1.1. Измерение переходного сопротивления между плитой заземления разъединителя и кабельным подключением	
	5.1.1.2. Измерение переходного сопротивления между кабельным подключением смежных шкафов (пофазно)	
	5.1.2. Испытание главных цепей напряжением промышленной частоты	
	5.1.2.1. Проверка изоляции сборных шин секции (выполняется перед вводом РУ в эксплуатацию)	34
	5.1.2.2. Высоковольтные испытания фидера (могут выполняться без перерыва в питании потребителей секции)	
	5.1.2.3. Проверка воздушного промежутка разъединителя (проверка при вводе в эксплуатацию)	37
	5.1.3. Проверка кабелей повышенным напряжением	38
	5.2. Сервисные операции со вторичными цепями	39
	.3. Проверки	39
	.4. Замена оборудования	39
6.	ГЕКУЩИЙ РЕМОНТ	40
7.	АРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА И ЗАМЕНА ОТКАЗАВШЕГО ОБОРУДОВАНИЯ	40
	.1. Гарантийные обязательства	40
	7.1.1. Гарантийный срок	
	7.1.2. Гарантийные условия	
	7.1.3. Территория действия гарантии	
	7.1.4. Косвенный ущерб40	
	7.1.5. Рекламации	
	.2. Замена отказавшего оборудования	40
	7.2.1. Замена коммутационного модуля шкафа	
	7.2.2. Замена комплекта комбинированных датчиков тока и напряжения шкафа	44
	7.2.3. Замена модуля управления шкафа	44
	7.2.4. Замена панели управления шкафа	45
8.	/ТИЛИЗАЦИЯ	46

1. ВВЕДЕНИЕ

В Руководстве по эксплуатации описано распределительное устройство, состоящее из секций TER_Sec10_ Etalon_1, построенных на базе шкафов КРУ серии «Эталон» (рис. 1).

Информация предназначена для изучения и использования персоналом, осуществляющим оперативные переключения, текущее обслуживание и утилизацию продукта.

В состав документации по продукту входят также технические документы, приведенные в **таблице 1**.

Таблица 1. Документация для РУ на базе TER_Sec10_Etalon_1

Наименование	Целевая аудитория	Цель документации
Техническая информация	Представители проектных организаций, сетевых компаний или иных предприятий, проектирующих или эксплуатирующих энергетические объекты класса напряжения 10(6) кВ	Ознакомление с функциональными возможностями и ключевыми преимуществами продукта .
Инструкция по оперативным переключениям	Пользователи, осуществляющие оперативные переключения	Обеспечение информацией о порядке осуществления оперативных переключений
Инструкция по монтажу и пусконаладке	Монтажно-наладочные организации	Обеспечение информацией о транспортировании, хранении, порядке монтажа и ввода в эксплуатацию
Руководство пользователя TELARM	Пользователи, эксплуатирующие распредустройство	Обеспечение информацией о порядке работы с распред-устройством через ПО TELARM

К работе с распределительным устройством допускается персонал, изучивший вышеперечисленную документацию по данному продукту и/или прошедший обучение в компании «Таврида Электрик».

При необходимости обучение персонала проводится после завершения пусконаладочных работ. Внеочередное обучение проводится по требованию Заказчика сотрудниками региональных представительств «Таврида Электрик».

2. ПРИНЯТЫЕ СОКРАЩЕНИЯ

ABP — автоматический ввод резервного источника питания;

АПВ — автоматическое повторное включение;

АЧР — автоматическая частотная разгрузка;

ВВ — вакуумный выключатель;

 ${f B}{f Д}{f K}-{f B}$ акуумная дугогасительная камера;

BTX — времятоковая характеристика;

ДД3 — датчик дуговой защиты;

3МН — защита минимального напряжения;

30М — защита от обратного направления мощности;

 30Φ — защита от обрыва фазы;

3ПП — защита от потери питания;

ЗРУ — закрытое распределительное устройство;

3СН — защита от смещения нейтрали;

КДТН — комбинированный датчик тока и напряжения;

K3 — короткое замыкание;

KH — контроль напряжения;

 ${\sf KРУ}-{\sf комплектное}$ распределительное устройство;

MB — модуль высоковольтный;

MT3 — максимальная токовая защита;

ОВ — основной ввод;

033 — однофазное замыкание на землю;

OЛ — отходящая линия;

ОПН — ограничитель перенапряжений нелинейный;

ПРВ — параллельная работа вводов;

 Πy — панель управления;

РВ — резервный ввод;

РЗА — релейная защита и автоматика;

PY — распределительное устройство;

 $\mathbf{C}\mathbf{Ш}$ — сборные шины;

TO — токовая отсечка;

ЧАПВ — частотное АПВ;

ЧРВ — часы реального времени .

3. ОБЩИЕ СВЕДЕНИЯ

3.1. Состав продукта и структура условных обозначений

Секции РУ TER_Sec10_Etalon_1 предназначены для построения распределительных устройств напряжением 6-10 кВ в сетях с изолированной или эффективно заземлённой нейтралью. Шкафы, входящие в состав секций, представляют собой новое поколение устройств с интегрированной системой измерений, релейной защиты и автоматики.

Распределительные устройства на базе шкафов КРУ серии «Эталон» строятся посекционно с присоединением вводов к каждой секции (с перекрёстным вводом).

В состав каждой секции входят: шкаф основного ввода (ОВ), шкаф резервного ввода (РВ), а также отходящие линии в количестве не более 16. Шкафы иного назначения в составе распредустройства не применяются. Состав каждой секции, а также предоставляемых услуг при поставке оборудования определяется кодом продукта TER_Sec10_Etalon_1(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9) с девятью параметрами. Описание параметров приведено в таблице 2.

Par1

Параметр, исходя из класса напряжения, определяет тип ОПН, которые будут установлены в отгружаемых шкафах.

При Par1 = 6 кВ будут применены ОПН-РТ-6/6,9 . При Par1 = 10 кВ будут применены ОПН-РТ-10/11,5 .

Литера М после обозначения класса напряжения обозначает исполнение без резервного ввода . В секции с литерой М есть один (основной) ввод .

Par2

Параметр определяет количество отходящих линий, которое будет содержать поставляемая секция. Секция всегда содержит основной ввод, а также резервный ввод. Количество отходящих линий не может быть меньше 1. Количество отходящих линий в секции должно быть определено проектом.

Par3

При Par3 = 1 в комплекте с секцией поставляется шкаф оперативного тока с напряжением на выходе 220 В и емкостью 1,2 $A \cdot u$, позволяющий обеспечить работу P3uA при пропадании внешнего питания.

Par4

При разработке проектной документации на распредустройство технико-коммерческим центром «Таврида Электрик» Par4=1 .

Par5

При осуществлении строительно-монтажных работ по размещению и установке РУ силами ТКЦ Par5 = 2. При осуществлении строительно-монтажных работ по размещению и установке РУ силами субподрядной организации Par5 = 1.

Par6

При осуществлении пусконаладочных работ с распредустройством силами ТКЦ Par6 = 2. При осуществлении пусконаладочных работ с распредустройством силами субподрядной организации Par6 = 1.

Par7

Данный параметр определяет количество комплектов наконечников для подключения кабеля сечением жилы 50мм^2 , допускающих подключение болтом M16 .

Par8

Данный параметр определяет количество комплектов наконечников для подключения кабеля сечением жилы 70мм^2 , допускающих подключение болтом M16 .

Par9

Данный параметр определяет количество комплектов наконечников для подключения кабеля сечением жилы 95мм^2 , допускающих подключение болтом M16 .

При заказе двухсекционного распредустройства заполняются два опросных листа отдельно на каждую секцию.

Таблица 2. Перечень параметров, определяющих поставку оборудования TER_Sec10_Etalon_1 (Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9)

Параметр	Описание параметра	Допустимое состояние		Код
		Основной и резерв- ный ввод	6 кВ 10 кВ	6
Par1	Класс РУ		-	· · ·
		Только основной ввод	6 кВ 10 кВ	6M
Par2	Количество отходящих линий в составе секции	От 1 до	-	116
		Есть		1
Par3	Шкаф бесперебойного питания РЗиА секции и аварийного освещения	Нет		0
	Проектно-изыскательные работы по РУ силами	Выполняются силами Т	-кц	1
Par4	технико-коммерческого центра «Таврида Электрик»	Не выполняются		0
		Не выполняются		0
Par5	Строительно-монтажные работы по размещению и установке РУ силами технико-коммерческого центра «Таврида Электрик»	Выполняются субподрядной организацией		1
		Выполняются силами ТКЦ		2
		Не выполняются		0
Par6	Работы по пусконаладке РУ силами технико- коммерческого центра «Таврида Электрик»	Выполняются субподря организацией	ядной	1
		Выполняются силами ТКЦ		2
Par7	Количество комплектов наконечников для подключения кабеля сечением жилы 50мм² к КРУ Эталон	По количеству кабельных линий секции с соответствующим сечением жилы . От 0 до количества ячеек в секции		016
Par8	Количество комплектов наконечников для подключения кабеля сечением жилы 70мм² к КРУ Эталон	По количеству кабельных линий секции с соответствующим сечением жилы . От 0 до количества ячеек в секции		016
Par9	Количество комплектов наконечников для подключения кабеля сечением жилы 95мм² к КРУ Эталон	По количеству кабельных линий секции с соответствующим сечением жилы . От 0 до количества ячеек в секции		016

3.2. Технические характеристики

Технические характеристики главных цепей, а также конструктивные особенности и условия эксплуатации шкафа TER_{SP15} _Etalon_1 приведены в **таблице 3** .

Таблица 3. Технические характеристики

Наименование параметра, характеристики	Значение, описание
Номинальное напряжение, кВ	6; 10
Наибольшее рабочее напряжение, кВ	7,2; 12,0
Испытательное напряжение полного грозового импульса, кроме контактов разъединителя, кВ	75
Испытательное напряжение полного грозового импульса между контактами разъединителя, кВ	85
Испытательное напряжение промышленной частоты, относительно земли, между фазами и между контактами выключателя, кВ	42
Испытательное напряжение промышленной частоты между контактами разъединителя, кВ	48
Номинальный ток сборных шин, А	1000
Номинальный ток главных цепей, А	630; 800; 1000
Номинальный ток отключения выключателя, кА	20
Ток электродинамической стойкости (наибольший пик), кА	51
Ток термической стойкости (среднеквадратичное значение), кА	20
Время протекания тока термической стойкости, с - главный контур - контур заземления	4,0 1,0
Собственное время включения коммутационного аппарата, мс, не более	60
Собственное время отключения коммутационного аппарата, мс, не более	27
Полное время отключения коммутационного аппарата, мс, не более	37
Время идентификации дугового замыкания, мс, не более	10
Полное время отключения от дуговой защиты с учетом времени работы ДЗ, мс, не более	40
Стандартный коммутационный цикл	O-0,3c-B-O-10c-B-O
Ресурс по механической стойкости, операций В-О, не менее	50000
Ресурс по коммутационной стойкости, операций B-O: при номинальном токе, не менее при номинальном токе отключения, не менее	50000 25
Ресурс разъединителя по механической стойкости, циклов «ЗАЗЕМЛЕНО-ИЗОЛИРОВАНО- ВКЛЮЧЕНО», не менее	2000
Вид изоляции	Воздушная, твердая
Изоляция сборных шин	Комбинированная
Вид линейных высоковольтных подсоединений	Кабельные

Наименование параметра, характеристики	Значение, описание
Наличие выдвижных элементов в шкафах	Быстрозаменяемый высоковольтный (коммутационный) модуль
Условия обслуживания	Одностороннего обслуживания
Вид оболочки	Сплошная металлическая
Наличие перегородок между отсеками	Со сплошными металлическими перегородками ¹
Степень защиты оболочек по ГОСТ 14254-96	IP 2XC
Вид управления	Местное, дистанционное оперирование коммутационным аппаратом
Срок службы до замены, лет, не менее	30
Нижнее рабочее значение температуры окружающей среды, \mathbf{C}°	-45
Верхнее рабочее значение температуры окружающей среды, С°	+40
Максимальная высота над уровнем моря, м, не более	1000
Относительная влажность воздуха: среднедневная,% среднемесячная,%	95 90
Группа механического исполнения по ГОСТ 7516.1-90	M6
Класс дугостойкости, длительность дуги	AF 20 кA, 0,2 c
Масса брутто, кг	350
Масса нетто, кг	240

3.3. Конструкция

3.3.1. Конструкция шкафа TER_SP15_Etalon_1

Шкафы КРУ, входящие в состав секций TER_Sec10_ Etalon_1, выполнены в металлической оболочке и имеют разделенные отсеки, позволяющие ограничить распространение повреждения при дуговом замыкании за рамки одного отсека . Каждый высоковольтный отсек шкафа снабжен клапанами аварийного сброса давления и датчиками защиты от дуговых замыканий с действием на отключение соответствующего коммутационного аппарата.

Узел стыковки по сборным шинам позволяет оперативно выполнять соединение шкафов друг с другом . Любой шкаф секции может стать как проходным, так и тупиковым . В последнем случае используются изоляционные заглушки, обеспечивающие требуемую электрическую прочность изоляции.

В шкафах КРУ приняты меры, предотвращающие воздействие открытой дуги на элементы цепей вторичной

коммутации, включая датчики и соединительные провода, расположенные в силовых отсеках шкафов.

Схема главных цепей шкафа приведена на рис. 1а.

Общий вид шкафа коммутационного показан на **рис. 16**, где:

- 1 модуль управления;
- 2 панель управления;
- 3-блокирующая рукоятка модуля высоковольтного;
- 4 модуль высоковольтный;
- 5 изоляторы подвижных контактов разъединителя;
- 6 сборные шины;
- 7- проходной изолятор со встроенным комбинированным датчиком тока и напряжения;
 - 8- кабельный приемник;
 - 9 кабельные фиксаторы.

¹В шкафу коммутационном перегородка между отсеком модуля высоковольтного и отсеком сборных шин выполнена из дугостойкого композитного материала. Перегородка обеспечивает стойкость к внутренней дуге в соответствии с требованиями ГОСТ 14693-90.

Рис. 1. Шкаф коммутационный: a- схема главных цепей; 6- общий вид

Внутренний объем шкафа разделен на следующие отсеки (рис. 2):

- релейный отсек (РО);
- отсек сборных шин (ОСШ);
- отсек модуля высоковольтного (OMB);
- кабельный отсек (КО).

Рис. 2. Отсеки шкафа коммутационного

3.3.2. Модуль высоковольтный ISM15_Mono_1

Модуль высоковольтный включает в себя вакуумный выключатель, трехпозиционный разъединитель (называемый также «селектором»), его ручной привод с датчиками положения и устройствами блокировки . Модуль высоковольтный представляет собой единый интегрированный узел, который может быть полностью удален из шкафа,

если это требуется в процессе эксплуатации. Основным узлом высоковольтного модуля является вакуумный выключатель, электрически соединенный с трехпозиционным разъединителем (рис. 3). Последний обеспечивает сопряжение между выключателем и системой сборных шин, либо между выключателем и плитой заземления.

Рис. 3. Модуль высоковольтный ISM15_Mono_1

- 1 блокирующая рукоятка;
- 2 предохранительная шторка;
- 3 элемент мнемосхемы, показывающий положение выключателя (включен, отключен);
- 4 элемент мнемосхемы, показывающий положение разъединителя (ВКЛЮЧЕНО, ИЗОЛИРОВАНО, ЗАЗЕМЛЕНО).

Трехпозиционный разъединитель, входящий в состав высоковольтного модуля, имеет три пространственных, разнесенных в горизонтальной плоскости, фиксированных положения, а именно (Рис. 4):

a- «ЗАЗЕМЛЕНО»: подвижный контакт разъединителя соединяет подвижный вывод ВДК коммутационного моду-

ля с плитой заземления модуля высоковольтного, подключенной к общему защитному заземлению шкафа коммутационного;

- 6 «ИЗОЛИРОВАНО»: подвижный контакт разъединителя расположен в промежуточном положении, обеспечивающем электропрочную изоляцию подвижного вывода ВДК модуля коммутационного как от потенциала земли, таки от высоковольтного потенциала сборных шин;
- в «ВКЛЮЧЕНО»: подвижный контакт разъединителя соединяет подвижный контакт ВДК коммутационного модуля с элементами сборных шин шкафа коммутационного .

Контроль за подвижными контактами разъединителя в положении «ЗАЗЕМЛЕНО» производится визуально через смотровое окно .

Рис. 4. Иллюстрация положений разъединителя: a - «ЗАЗЕМЛЕНО», 6 - «ИЗОЛИРОВАНО», в - «ВКЛЮЧЕНО»

где 1 - плита заземления;

2- шина вакуумного выключателя;

3 — вакуумная дугогасительная камера (ВДК);

4- гнездо сборных шин;

5- тяговый изолятор ВВ;

6- подвижный (цанговый) контакт .

Рис. 5. Модуль высоковольтный в разрезе в составе шкафа

На **рис. 5** представлен модуль высоковольтный в разрезе . На данной иллюстрации разъединитель находится в положении «ЗАЗЕМЛЕНО» .

3.3.3. Трехфазныйкомбинированный датчиктока и напряжения VCS_Etalon_2

В перегородке между отсеком кабельным и отсеком МВ расположен набор проходных изоляторов со встроенным комбинированным датчиком тока и напряжения (рис. 6).

Рис. 6. Трехфазный комбинированный датчик тока и напряжения VCS_Etalon_2: a - yстановка в отсеке КРУ; 6 - yстройство КДТН одной фазы

Устройство комбинированного датчика тока и напряжения представлено на **рис. 66**, где:

- 1 верхний вывод (P1);
- 2- токоведущая шина;
- 3 гайка;
- 4 фиксатор токоведущей шины;
- 5 колпак верхний;
- 6 дефлектор;
- 7 датчиктока;
- 8— обмотка трансформатора тока нулевой последовательности;
 - 9 изолятор проходной;
 - 10 обкладка конденсатора датчика напряжения;

12 — нижний вывод (P2, кабельный приемник).

3.3.4. Кабельный отсек

В кабельном отсеке (рис. 7) располагается узел кабельного присоединения, который обеспечивает следующие функции:

- подключение до двух трехфазных и шести однофазных кабелей сечением жилы до 240 мм 2 ; 2
- подключение ОПН (при необходимости);
- отключение ОПН с помощью изоляционной штанги;
- проверку напряжения на кабеле с помощью указателя напряжения;
- подключение устройства проверки кабелей повышенным напряжением амплитудой до 60 кВ.

^{11 —} колпак нижний;

² Наружный диаметр кабеля не более 65 мм .

Рис. 7. Кабельный отсек

В нижней части кабельного отсека располагаются кабельные фиксаторы, с помощью которых крепится кабель за наружную оболочку, что снимает тяжение с кабельных приёмников.

Фасадная панель кабельного отсека заблокирована от открывания электромагнитным замком, предотвращающим доступ в отсек при незаземленном кабеле . Разблокировка происходит при заземлении фидера (см. п. 4.2.4) и при наличии оперативного питания . При необходимости ручного разблокирования отсека может быть использовано опломбированное гнездо доступа на фасадной панели КО.

3.3.5. Релейный отсек

В релейном отсеке устанавливаются элементы защиты и автоматики (рис. 8).

На передней панели 1 релейного отсека монтируется панель управления 2 модуля управления и защиты . Панель запирается спецзамком 3, а при необходимости доступа в релейный отсек откидывается наверх и автоматически фиксируется в открытом состоянии с помощью защелки-фиксатора .

Внутри релейного отсека расположен модуль управления и защиты 4, который установлен на основании, закрепленном невыпадающими винтами на боковых кронштейнах . При откручивании винтов модуль управления выдвигается вперед .

Трубки системы дуговой защиты 5, идущие от высоковольтных отсеков к пневмодатчикам избыточного давления, и шлейфы вторичных цепей закреплены на крышке так, чтобы при закрывании передней панели они не имели изломов и смятий.

Рис. 8. Релейный отсек

Цепи оперативного питания выведены снизу на разъемы крышки 6, расположенной между передней и задней верхними крышками шкафа. Количество разъемов зависит от типа установленного в шкафу модуля управления и определяется на этапе заказа. Шкаф основного ввода имеет помимо разъемов две антенны для организации внешних беспроводных подключений по каналам GPRS и Wi-Fi.

3.4. Маркировка и пломбирование

3.4.1. Маркировка шкафа

Металлическая табличка с обозначением шкафа и его параметрами, годом изготовления расположена внизу на фасадной панели ОМВ . Металлическая табличка с серийным номером находится на корпусе шкафа, между фасадными панелями ОМВ и КО .

Рис. 9. Маркировка шкафа

3.4.2. Пломбирование модуля высоковольтного

На крышку основания МВ наклеивается пломбировочная этикетка так, что крышку нельзя снять, не повредив этикетку.

Рис. 10. Пломбирование МВ

3.4.3. Пломбирование модуля управления

Модуль управления пломбируется путем заклеивания крепежных винтов пломбировочными этикетками в четырёх местах .

Рис. 11. Пломбирование модуля управления

3.4.4. Пломбирование панели управления

Панель управления пломбируется путем заклеивания крепежного винта пломбировочной этикеткой .

Рис. 12. Пломбирование панели управления

3.4.5. Пломбирование трехфазного комбинированного датчика тока и напряжения

КДТН каждой фазы пломбируется пломбировочной этикеткой, наклеенной на линию разъема корпуса .

Рис. 13. Пломбирование КДТН

4. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

4.1. Интерфейсы управления

4.1.1. Общие сведения

Управление шкафами может выполняться в местном режиме.

В режиме местного управления доступны интерфейсы:

- панель управления;
- механическое управление;
- TELARM:
- интерфейсы дискретных входов-выходов.

4.1.2. Панель управления

Панель управления (**puc. 14**) предназначена для управления и снятия показаний в местном режиме работы .

На панели управления расположены:

- дисплей;
- индикаторы состояния коммутационного модуля и защит;
- кнопки навигации по меню;
- кнопки ввода/вывода защит.

Рис. 14. Панель управления

Структура меню панели управления представлена в разделе **4.3**.

4.1.3. TELARM

TELARM — сервисное программное обеспечение, предназначенное для выполнения в режиме местного управления непосредственно рядом с секцией КРУ функций:

- управления;
- изменения настроек;
- просмотра журналов и данных измерений, сигнализации.

В качестве канала передачи данных **TELARM** используется Wi-Fi-соединение .

При подключении к секции **TELARM** дает доступ ко всем ее шкафам. Подробное описание программного обеспечения приведено в «Руководстве по эксплуатации **TELARM**».

4.1.4. Интерфейс дискретных входов/выходов

Интерфейс дискретных входов/выходов предназначен:

- для выполнения функций управления, ввода/вывода защит с помощью входных реле;
- для сигнализации с помощью контактов.

Выходы интерфейса расположены на клеммной колодке X2:

- X2.1 Реле 1. Нормально разомкнутый контакт;
- X2.2 Реле 1. Общий вход;
- X2.3 Реле 1. Нормально замкнутый контакт.
- X2.8 Реле 2. Нормально разомкнутый контакт;
- X2.9 Реле 2. Общий вход;
- X2.10 Реле 2. Нормально замкнутый контакт.

Входыинтерфейсарасположенынаклеммнойколодке X2:

X2.4 — Вход 1. Контакт 1;

X2.5 — Вход 1. Контакт 2;

X2.6 — Вход 2. Контакт 1;

X2.7 — Вход 2. Контакт 2.

4.2. Оперативные переключения

4.2.1. Ручное отключение

Для ручного (аварийного) отключения фидера повернуть блокировочную рукоятку на 90° по часовой стрелке, как показано на **рис.** 15 .

Рис. 15. Аварийное отключение фидера

4.2.2. Штатное отключение фидера

Для отключения фидера нажать кнопку «О» на панели управления (рис. 16) .

ВНИМАНИЕ! ПРИ ОТСУТСТВИИ ОПЕРАТИВНОГО ПИТАНИЯ ПОЛЬЗОВАТЬСЯ РУЧНЫМ (АВАРИЙНЫМ) ОТКЛЮЧЕНИЕМ.

Рис. 16. Отключение фидера

4.2.3. Включение фидера

Для включения фидера нажать кнопку «I» на панели управления (рис. 17).

Рис. 17. Включение фидера

ВНИМАНИЕ! ВКЛЮЧЕНИЕ ФИДЕРА НЕВОЗМОЖНО В СЛЕДУЮЩИХ СЛУЧАЯХ:

- блокировочная рукоятка фидера находится в положении «ВВ отключен и заблокирован»;
- при попытке включения фидера резервного ввода (ФРВ) и включенном фидере основного ввода (ФОВ) . В этом случае на дисплее высвечивается надпись «Заблокировано Φ OB»;
- при попытке включения фидера основного ввода (ФОВ) и включенном фидере резервного ввода (ФРВ) . В этом случае на дисплее высвечивается надпись «Заблокировано ФРВ»;
- при попытке подачи питания в отсеки, где произошло дуговое замыкание . В этом случае на дисплее высвечивается надпись «Заблокировано от Д3»;
- если местный режим управления фидером находится в состоянии «ВЫКЛ» .
- В крайних положениях разъединителя при вращении ручки привода разъединителя и совершении более одного щелчка разблокирование выключателя невозможно.

4.2.4. Заземление фидера

(Для проведения ремонтных или сервисных операций на линии или оборудовании, подключенном к питаемой линии)

ВНИМАНИЕ! ЗАЗЕМЛЕНИЕ ЛИНИЙ ПОД НАПРЯЖЕНИЕМ ЗАПРЕЩЕНО! ПРОВЕРЬ ОТСУТСТВИЕ НАПРЯЖЕНИЯ ПЕРЕД ЗАЗЕМЛЕНИЕМ!

- 1. Перевести блокировочную рукоятку в положение «ВВ отключен и заблокирован» (рис. 15).
- 2. Вставить рукоятку управления разъединителем в гнездо (рис. 18).

Рис. 18. Установка рукоятки управления разъединителем

3. Вращением рукоятки перевести разъединитель в положение «ЗАЗЕМЛЕНО» (рис. 19).

Рис. 19. Установка положения разъединителя

- 4 . Нажав кнопку «ИЗМЕРЕНИЯ» на панели управления, перейти в раздел измерения напряжений. Убедиться, что значение индицируемого напряжения равно нулю.
- 5 . Извлечь рукоятку управления разъединителем из гнезда (рис. 20) .

Рис. 20. Извлечение рукоятки управления разъединителем

6 . Повернуть блокировочную рукоятку против часовой стрелки на 90° (рис. 21) .

Рис. 21. Разблокировка выключателя

7. Включить выключатель (рис. 17).

ВНИМАНИЕ! ЗАЗЕМЛЕНИЕ ФИДЕРА АКТИВИРУЕТ БЛО-КИРОВКУ, РАЗБЛОКИРУЮЩУЮ ФАСАДНУЮ ПАНЕЛЬ КА-БЕЛЬНОГО ОТСЕКА ДЛЯ ОТКРЫВАНИЯ. ДЛИТЕЛЬНОСТЬ РАЗБЛОКИРОВАННОГО СОСТОЯНИЯ ОГРАНИЧЕНА ВРЕ-МЕНЕМ 25 СЕК. ЕСЛИ ЗА ЭТО ВРЕМЯ ПАНЕЛЬ КАБЕЛЬ-НОГО ОТСЕКА НЕ ОТКРЫЛИ, ДЛЯ ПОВТОРНОЙ РАЗБЛО-КИРОВКИ ПАНЕЛИ ПОТРЕБУЕТСЯ ПЕРЕВЕСТИ СЕЛЕКТОР В ПОЛОЖЕНИЕ «ИЗОЛИРОВАНО» (см. п. 4.2.5), А ЗАТЕМ СНОВА ПРОВЕСТИ ОПЕРАЦИЮ ЗАЗЕМЛЕНИЯ ФИДЕРА.

4.2.5. Обеспечение воздушного

изоляционного промежутка

(Для прогрузки фидера высоким напряжением, для проведения ремонтных или сервисных операций на линии или оборудовании, подключенном к питаемой линии)

Перевести блокировочную рукоятку в положение «ВВ отключен и заблокирован» (рис. 15).

Вставить рукоятку управления разъединителем в гнездо (рис. 18).

Вращением рукоятки перевести разъединитель в положение «ИЗОЛИРОВАНО» (рис. 22).

Рис. 22. Обеспечение воздушного промежутка

Извлечь рукоятку управления разъединителем из гнезда (рис. 20) .

Повернуть блокировочную рукоятку против часовой стрелки на 90° (рис. 21).

4.2.6. Подключение фидерак сборным шинам

Перевести блокировочную рукоятку в положение «ВВ отключен и заблокирован» (рис. 15).

Вставить рукоятку управления разъединителем в гнездо (рис. 18).

Вращением рукоятки разъединителя перевести разъединитель в положение «ВКЛЮЧЕНО» (рис. 19).

Извлечь рукоятку управления разъединителем из гнезда (рис. 20).

Повернуть блокировочную рукоятку против часовой стрелки на 90° (рис. 21).

Включить выключатель (рис. 17).

4.3. Изменение настроек

ВНИМАНИЕ! СЕКЦИИ ПОСТАВЛЯЮТСЯ НАСТРОЕННЫМИ И ПРОТЕСТИРОВАННЫМИ СОГЛАСНО ПРОЕКТУ. ЗА ПРАВИЛЬНОСТЬ ИЗМЕНЕННЫХ НАСТРОЕК НЕСЕТ ОТВЕТСТВЕННОСТЬ ФАКТИЧЕСКИЙ ИСПОЛНИТЕЛЬ.

4.3.1. Изменение настроек РЗиА

Для изменения настроек РЗиА каждого из шкафов необходимо перейти по меню управления в настройки РЗА, как показано на рис. 23.

Для возврата на верхний уровень меню нажать клавишу «Отмена» .

Для изменения настроек в TELARM Basic необходимо перейти в «Уставки P3A» .

Для этого требуется:

- Открыть файл проекта . Нажать на знак «+» по папке с проектом.
- Открыть настройки шкафов на фидере . Нажать на знак «+» на фидере.
- Выбрать «Уставки РЗА» . Нажать на знак «+» в системных настройках.
- Выбрать необходимую группу уставок РЗА для редактирования .

Изменение настроек функций защит и автоматики рекомендуется выполнять одновременно для всех 4 групп настроек. Это обеспечит правильную работу при непреднамеренном изменении активной группы.

Основное меню	Ш Настройки	Релейная защита и автоматика
Индикация	Системные параметры	Группа 1
Управление с панели	> Релейная защита и автоматика	Группа 2
> Настройки	Связь	Группа 4
		Группа 3

Таблица 4. Уставки МТЗ-1

	Уставка		Применимое значение	Настройка от «Таврида Электрик»
MT3-1	втх	Тип ВТХ	TEL I TD IEC EI IEC VI IEC I IEC Custom ANSI EI ANSI VI ANSI MI ANSI Custom TEL A	TD
	I _{CP} , A	Ток срабатывания	10-6000	По проекту
	t _{cP} , c	Время срабатывания	0-180	По проекту

Таблица 5. Уставки МТЗ-2

Уставка			Применимое значение	Настройка от «Таврида Электрик»
			TEL I	
			TD	
		Тип BTX	IEC EI	
			IEC VI	
			IEC I	
	ВТХ		IEC Custom	TD
MT3-2			ANSI EI	
			ANSI VI	
			ANSI MI	
			ANSI Custom	
			TEL A	
	I _{CP} , A	Ток срабатывания	10-6000	По проекту
	t _{CP} , c	Время срабатывания	0-100	По проекту

Таблица 6. Уставки МТЗ-3

Уставка			Применимое значение	Настройка от «Таврида Электрик»	
	Режи	им работы	Введено	Введено	
MT3-3	T C/N	ти рассты	Выведено	Введено	
MIS 3	I _{CP} , A	Ток срабатывания	40-6000	По проекту	
	t _{cp} , c	Время срабатывания	0-5	По проекту	

Таблица 7. Уставки АПВ

	Уставка	Применимое значение	Настройка от «Таврида Электрик»
	Количество отключений до запрета АПВ	1-4	1
	Количество отключений от МТЗ-3 до запрета АПВ	1, 2, 3, 4	1
	Блокировка от элемента контроля напряже-	Введено	Введено
	ния	Выведено	ББСДСПО
	t _{AΠΒ1} , c	0,1-180	Не применимо
АПВ МТЗ	t _{AΠB2} , c	2-1800	Не применимо
	t _{AΠB3} , c	5-1800	Не применимо
	Режим ускорения МТЗ при первом включении	Введено	Выведено
		Выведено	
	Последовательность АПВ	Б	Б
		М	
	Время возврата, с	1-180	1

Таблица 8. Время сброса АПВ

Уставка		Применимое значение	Настройка от «Таврида Электрик»
Т	Время сброса АПВ	1-360	1

Таблица 9. Уставки элемента контроля напряжения

	Уставка	Применимое значение	Настройка от «Таврида Электрик»
	Режим работы блокировки по понижению	Введено	Выведено
	частоты	Выведено	выведено
	Режим работы блокировки по повышению	Введено	Введено
	напряжения	Выведено	оведено
	Режим работы блокировки по понижению	Введено	Введено
	напряжения	Выведено	оведено
	Режим работы блокировки по напряжению обратной последовательности	Введено	Введено
кн		Выведено	
	Режим работы блокировки по напряжению нулевой последовательности	Введено	Выведено
		Выведено	выведено
	U _{MAKC CP} , o.e.	1-1,3	1,15
	U _{мин ср} , o.e.	0,5-1,0	0,8
	F _{ср} , Гц	45,0-59,9	-
	U _{2CP} , o.e.	0,05-1,0	0,2
	U _{ocp} , o.e.	0,05-1,0	-

Таблица 10. Уставки 033

	Уставка		Настройка от «Таврида Электрик»
	Режим работы	Введено/выведено Сигнал	Сигнал
	I _{CP} A ³	0,1-80,0	По проекту
	t _{cp} , c	0,15-100	По проекту
033	Режим работы блокировки от MT3-1, MT3-2	Введено/выведено	Введено
	$C_{_{MMH}}$, MK Φ^4	0,0-10,0	-
	С _{макс} , мкФ	0,0-10,0	-
	Тип	Направленная/ Токовая	Токовая

 $^{^{4}\,\}mbox{Эта}$ уставка применяется если выбран тип «Импедансная» .

Таблица 11. Уставки АПВ ОЗЗ

	Уставка	Применимое значение	Настройка от «Таврида Электрик»
	Число отключений до запрета АПВ	1-4	1
АПВ ОЗЗ	t _{AΠΒ1} , C	0,1-180	Не применимо
AIID 055	t _{AΠΒ2} , C	2-1800	Не применимо
	t _{ANB3} , C	5-1800	Не применимо

Таблица 12. Уставки ЗМН

Уставка		Применимое значение	Настройка от «Таврида Электрик»
ЗМН	Режим работы	Введено/ выведено	Введено
(применимо только для шкафа основного ввода)	U _{CP}	0,5-1	0,8
	t _{cP} , c	2-180	30

Таблица 13. Уставки ЗПН

Уставка		Применимое значение	Настройка от «Таврида Электрик»
ЗПН	Режим работы	Введено/ выведено	Введено
(применимо только для шкафа основного ввода)	U _{CP}	1-1,5	1,2
	t _{cP} , c	2-180	30

Таблица 14. Уставки АЧР

Уставка		Применимое значение	Настройка от «Таврида Электрик»
АЧР	Режим работы	Введено/ выведено	Выведено
(применимо только для шкафов отходящихлиний)	F _{сь} , Гц	45-50	48
	t _{cp} , c	2-180	30

Таблица 15. Уставки ЧАПВ

Уставка		Применимое значение	Настройка от «Таврида Электрик»
ЧАПВ	Число отключений до запрета АПВ	1-2	1
(применимо только для шкафов отходящих линий)	t _{ADB} , c	2-180	10

Таблица 16. Уставки 30Ф U2

Уставка		Применимое значение	Настройка от «Таврида Электрик»
3ОФ U2	Режим работы	Введено/ выведено	Выведено
(применимо только для шкафа основного ввода)	U _{cp} , o.e	0,05-1	0,5
	t _{cP} , c	2-180	1

Таблица 17. Уставки 30Ф l2

Уставка		Применимое значение	Настройка от «Таврида Электрик»
30Ф I2	Режим работы	Введено/ выведено	Выведено
(применимо только для шкафов отходящих линий)	I _{CP} , o.e	0,05-1	0,3
, , ,	t _{cp} , c	2-180	3

Таблица 18. Уставки КН

Уставка		Применимое значение	Настройка от «Таврида Электрик»
КН (проверка при выполнении АВР и АПВ)	Контроль снижения частоты	Введено/ выведено	Выведено
	Контроль превышения напряжения	Введено/ выведено	Введено
	Контроль снижения напряжения	Введено/ выведено	Введено
	Контроль обрыва фазы сверху	Введено/ выведено	Введено
	Контроль смещения нейтрали	Введено/ выведено	Выведено
	Снижение частоты F, Гц	45-50	49,5
	Превышение напряжения, U ,, о.е.	1-1,5	1,2

١	[/] ставка	Применимое значение	Настройка от «Таврида Электрик»
	Снижение напряжения, U _р , о.е.	0,5-1	0,8
	Обрыв фазы сверху, U /U , о.е.	0,05-1	0,2
	Смещение нейтрали, U /U , o.e.	0,05-1	0,4

Таблица 19. Уставки АВР

Уставка		Применимое значение	Настройка от «Таврида Электрик»
АВР (применимо только для шкафа основного ввода)	Время АВР, с	0-180	1

Таблица 20. Уставки ЗПП

У	ставка	Применимое значение	Настройка от «Таврида Электрик»
ЗПП (применимо только для	Режим работы	Введено/ выведено	Введено
шкафа основного ввода)	t _{cr} , c	0-180	0

Таблица 21. Уставки 30М

Ус	ставка	Применимое значение	Настройка от «Таврида Электрик»
3ОМ (применимо только для шкафов отходящих линий)	Режим работы	Введено/ выведено	Введено

Таблица 22. Уставки ЗСН

Уста	авка	Применимое значение	Настройка от «Таврида Электрик»
ЗСН	Режим работы	Введено/ выведено	Выведено
(применимо только для шкафов отходящих линий)	U _{CP} , o.e	0,05-1	0,3
	t _{cp} , c	1-180	10

Таблица 23. Уставки ВБВ

У	ставка	Применимое значение	Настройка от «Таврида Электрик»
ВБВ (применимо только для шкафа основного ввода)	Режим работы	Введено/ выведено	Выведено

4.3.2. Изменение системных настроек

Для изменения системных настроек шкафов необходимо перейти по меню управления в настройки РЗА, как показано на рис. 24.

Основное меню	@ Настройки	@ Системные параметры
Индикация	> Системные параметры	Конфигурация
Управление с панели	Релейная защита и автоматика	Местное соединение
> Настройки	Связь	Измерения
		Блок питания
		Счётчики и журналы
		Панель управления
		Часы реального времени

Рис. 24. Меню управления . Настройка системных параметров

Для возврата на верхний уровень нажать клавишу «Отмена» .

Для изменения системных настроек в TELARM Basic необходимо перейти в «Системные настройки» . Для этого требуется:

— открыть файл проекта. Нажать на знак «+» по папке с проектом;

- открыть настройки шкафов на фидере . Нажать на знак «+» на фидере;
- выбрать «Системные настройки». Нажать на знак «+» в системных настройках;
- войти в «Системные параметры». Выбрать необходимую группу параметров для редактирования.

Таблица 24. Настройки ЧРВ

Настройка часов реального времени	Применимое значение	Настройка от «Таврида Электрик»
Переход на летнее время	Введено/ Выведено	Выведено
Смещение летнего времени	-120/+120	60
Дата начала летнего времени	Мес/ЧЧ, ЧЧ: ММ: СС	Map/30, 02:00:00
Дата окончания летнего времени	Mec/44, 44: MM: CC	Окт/30, 02:00:00

Таблица 25. Настройки измерений

Настрой	ка измерений	Применимое значение	Настройка от «Таврида Электрик»
U _{ном} , кВ	Номинальное напряжение	6-10	В соответствии с проектом
F _{ном} , Гц	Номинальная частота	50-60	50

Настр	ойка измерений	Применимое значение	Настройка от «Таврида Электрик»
ΙΧ1, Β/κΑ	Коэффициент преобразования датчика тока фазы А	1,200-2,900	Определяется при производстве
Ι Χ2, Β/κΑ	Коэффициент преобразования датчика тока фазы В	1,200-2,900	Определяется при производстве
I X3, В/кА	Коэффициент преобразования датчика тока фазы С	1,200-2,900	Определяется при производстве
U X1, мВ/В	Коэффициент преобразования датчика напряжения фазы А	10,000-50,000	Определяется при производстве
U X2, мВ/В	Коэффициент преобразования датчика напряжения фазы В	10,000-50,000	Определяется при производстве
U X3, мВ/В	Коэффициент преобразования датчика напряжения фазы С	10,000-50,000	Определяется при производстве
Последовательность фаз X1X2X3	Последовательность фаз АВС	ABC, ACB, BCA, BAC, CAB, CBA	Уточняется при наладке
UX4, MB/B	Коэффициент преобразования датчика напряжения фазы R	10,000-50,000	Не используется
UX5, MB/B	Коэффициент преобразования датчика напряжения фазы S	10,000-50,000	Не используется
UX6, MB/B	Коэффициент преобразования датчика напряжения фазы Т	10,000-50,000	Не используется
Последовательность фаз X4X5X6	Последовательность фаз RST	RST, RTS, STANB, SRT, TANBS, TSR	Не используется

Таблица 26. Настройки панели управления

Настройки панели управления	Применимое значение	Настройка от «Таврида Электрик»
Задержка включения	0-300	0
Время нажатия на клавишу до включения	0-5	0,3
Время нажатия на клавишу до отключения	0-10	0,3
Режим кнопки «АПВ»	Выведено	Выведено
ежим кнопки «АПБ»	Введено	выведено
D 5	Выведено	Выведено
Режим кнопки «Группа»	Введено	выведено
Режим кнопки «О33»	Выведено	Выведено
гежим кнопки «ОЗЗ»	Введено	выведено
Пароль защит	1-8 символов	4
Пароль связи	1-8 символов	4
Системный пароль	1-8 символов	9

Таблица 27. Настройки WI-FI

Уставка	Применимое значение	Настройка от «Таврида Электрик»
Пароль Wi-Fi	00000000-9999999	44444
Идентификатор вида обслуживания	1-12	По проекту
Адрес Wi-Fi	В соответствии с ICPv4	192.168.100.11
Длительный режим работы	Введено/выведено	Введено

4.3.3. Изменение настроек передачи данных в SCADA

4.3.3.1. Общие положения

Для изменения настроек SCADA необходимо перейти по меню управления в настройки связи, как показано на **рис. 25** . Для возврата на верхний уровень меню нажать клавишу «Отмена» .

Основное меню	Ш Настройки	(В Связь
Индикация	Системные параметры	Дискретные входы-выходы
Управление с панели	Релейная защита и автоматика	Соединение с TELARM
> Настройки	> Связь	SCADA

Рис. 25. Меню управления . Настройки передачи данных

Для изменения настроек в TELARM Basic необходимо перейти в «Настройки связи» .

Для этого требуется:

- открыть файл проекта. Нажать на знак «+» по папке с проектом;
- открыть настройки шкафов на фидере . Нажать на знак «+» на фидере;
- выбрать «Настройки связи» . Нажать на знак «+» в SCADA;
- выбрать необходимые настройки связи для редактирования.

4.3.3.2. Основные настройки SCADA

Таблица 28. Основные уставки SCADA

Уставка	Применимое значение	Настройка от «Таврида Электрик»
УС	Прямое соединение / RS485-RS232 преобразователь / GSM-модем / Телефонный модем/ Радиомодем	По проекту
Протокол	DNP3 / Modbus	По проекту
Режим SCADA	Выведено / введено	По проекту

Таблица 29. Настройки радиомодема

Уставка	Применимое значение	Настройка от «Таврида Электрик»
Преамбула	Введено/выведено	По проекту
Символ-преамбула	От 0 до 255 (от 0x00 до 0xFF)	-
Последний символ-преамбула	От 0 до 255 (от 0x00 до 0xFF)	-
Количество повторений	От 0 до 25	-

Таблица 30. Настройки телефонного/GSM модема

Уставка	Применимое значение	Настройка от «Таврида Электрик»
Режим линии связи	Выделенная⁵ / коммутируемая6	По проекту
Интервал автоматического набора	От 0 до 255 с	По проекту
Префикс набора	От 0 до 32 символов	По проекту
Номера набора	До 5 номеров дозвона . От 0 до 32 символов	По проекту
Строка настройки	До 255 символов	По проекту
Команда отбоя	До 255 символов	По проекту
Команда отключения	До 255 символов	По проекту
Включить автоответчик	До 255 символов	По проекту
Выключить автоответчик	До 255 символов	По проекту
Тайм-аут соединения, с	От 0 до 255	По проекту
Время ответа, с	От 0 до 255	По проекту

4.3.3.3. Настройки Modbus

Таблица 31. Уставки канального уровня Modbus

Уставка	Применимое значение	Настройка от «Таврида Электрик»
Адрес ведомого устройства	От 1 до 247	По проекту
Режим автоматического тайм-аута	Введено/выведено	По проекту
Тайм-аут приема, мс	От 1 до 60000	По проекту

4.3.3.4. Настройки DNP3

Таблица 32. Уставки канального уровня DNP3

Уставка	Применимое значение	Настройка от «Таврида Электрик»
Адрес ведущего устройства	От 0 до 65534	По проекту
Адрес ведомого устройства	От 0 до 65534	По проекту
Режим подтверждения	Никогда/Иногда/Всегда	По проекту
Время подтверждения, с	От 0 до 60	По проекту
Максимум попыток	От 0 до 255	По проекту
Максимальный размер фрейма	От 64 до 292	По проекту
Проверка адреса мастера	Введено/выведено	По проекту
Самоадресация	Введено/выведено	По проекту

 $[\]overline{\,}^{5}$ Выделенная линия связи - линия связи (канал передачи данных), установленная постоянно .

 $^{^6}$ Коммутируемая линия связи - устанавливаемая только на время соединения передающего и принимающего устройств .

Таблица 33. Уставки уровня приложений DNP3

Уставка	вка Применимое значение Настройка от «Таврида Электрик»	
Режим подтверждения	Только события/ События и мультифрагменты	По проекту
Время подтверждения, с	От 0 до 3600	По проекту
Максимальный размер фрагмента, октетов	От 512 до 4096	По проекту
Время SBO, с	От 0 до 3600	По проекту
Время синхронизации интервала, мин	От 0 до 64800	По проекту
Задержка холодного рестарта, мс	От 0 до 65530	По проекту
Задержка теплого рестарта, мс	От 0 до 65530	По проекту

Таблица 34. Уставки уровня приложений DNP3 . Настройки незапрашиваемых ответов

Уставка	Применимое значение	Настройка от «Таврида Электрик»
Незапрашиваемый ответ	Введено/выведено	По проекту
Событие незапрашиваемого ответа . Класс 1	От 1 до 255	По проекту
Событие незапрашиваемого ответа . Класс 2	От 1 до 255	По проекту
Событие незапрашиваемого ответа . Класс 3	От 1 до 255	По проекту
Задержка повторной попытки, с	От 1 до 86400	По проекту
Количество повторных попыток, с	От 0 до 255	По проекту
Офлайновый интервал	От 0 до 86400	По проекту
Маска незапрашиваемого ответа . Класс 1	Введено/выведено	По проекту
Маска незапрашиваемого ответа . Класс 2	Введено/выведено	По проекту
Маска незапрашиваемого ответа . Класс 3	Введено/выведено	По проекту

4.3.3.5. Изменение настроек передачи данных TELARM Dispatcher

Таблица 35. Уставки TELARM . Панель управления

Уставка	Применимые значения	Настройки от «Таврида Электрик»
Уставки сервера		
Режим TELARM	Включен / Отключен	По проекту
Адрес сервера	-	По проекту
Первый порт сервера	Порт сервера со стороны RC	По проекту
Второй порт сервера	От 0 до 99999	По проекту
Уставки провайдеров		
Протокол аутентификации	PAP/CHAP	По проекту

Уставка	Применимые значения	Настройки от «Таврида Электрик»
Имя точки доступа	От 0 до 64 символов	По проекту
Имя пользователя	От 0 до 32 символов	По проекту
Пароль	От 0 до 32 символов	По проекту
Pin-код SIM-карты	От 0 до 4 символов	По проекту

4.3.3.6. Изменение настроек дискретных входов/выходов

Таблица 36. Уставки дискретных входов

Уставка	Применимое значение	Настройки от «Таврида Электрик»
Отключение	0-2	0
Включение	0-2	0
Ввести защиты	0-2	0
Ввести АПВ	0-2	0
Ввести режим «Работа на линии»	0-2	0
Ввести О33	0-2	0
Ввести Группу 1	0-2	0
Ввести Группу 2	0-2	0
Ввести Группу 3	0-2	0
Ввести Группу 4	0-2	0

Таблица 37. Уставки дискретных выходов

Уставка	Применимое значение	Настройки от «Таврида Электрик»
Дистанционный режим введен	0-2	0
Отключение с запретом включения	0-2	0
Отказ СМ	0-2	0
Неисправность	0-2	0
Управление обогревом	0-2	0
Предупреждение	0-2	0
Защиты введены	0-2	0
АПВ введено	0-2	0
Группа 1 введена	0-2	0
Группа 2 введена	0-2	0
Группа 3 введена	0-2	0
Группа 4 введена	0-2	0

Уставка	Применимое значение	Настройки от «Таврида Электрик»
Режим «Работа на линии» введен	0-2	0
О33 введено	0-2	0
Состояние коммутационного модуля	0-2	0
Введен сигнал 1, назначаемый пользователем	0-2	1
Введены сигналы 2-64, назначаемые пользователем	0-2	0

4.4. Работа с журналами

Все штатные и аварийные события, происходящие со шкафами и секциями, доступны для просмотра на панели управления и в местном режиме в TELARM .

4.5. Возможные неисправности и способы их устранения

Таблица 38. Возможные неисправности и способы их устранения

Проявление	Возможная причина	Корректирующее действие
Отсутствует индикация на панели управления	Режим ожидания, отсутствие оперативного питания	Нажать любую кнопку на панели управления . Если индикация отсутствует, открыть панель релейного отсека, проверить положение автомата оперативного питания. Если автоматический выключатель включен, проверить наличие питания на входе в шкаф, а также целостность соединительных жгутов. Если неисправность не устранена, обратиться в ближайший технико-коммерческий центр «Таврида Электрик»
Выбран дистанционный режим управления	Убедиться, что выбран местный режим управления фидером	
Невозможно включить выключатель с панели	в положении «Заблокировано»	Убедиться, что блокировочная рукоятка находится в положении «Включение ВВ разрешено»
управления (Индикация на панели управления присут- ствует)	Нарушение цепей привода	Проверить журнал неисправностей . При наличии записи «Обрыв цепи ЭМ» или «КЗ в цепи ЭМ» открыть панель релейного отсека, проверить целостность соединительных жгутов . При наличии записи «Отказ включения» обратиться в ближайший технико-коммерческий центр «Таврида Электрик»

5. ПРОВЕРКА И СЕРВИСНЫЕ ОПЕРАЦИИ

5.1. Сервисные операции с главными цепями

Периодичность и объём сервисных операций определяется действующей нормативно-технической документацией, принятой в эксплуатирующей КРУ организации. При

отсутствии в документации требований по периодичности проведения сервисных операций, описанных в данном разделе, их следует проводить не реже чем один раз в три года.

5.1.1. Измерение переходных сопротивлений главных цепей

5.1.1.1. Измерение переходного сопротивления между плитой заземления разъединителя и кабельным подключением

В проверяемом шкафу установить разъединитель в положение «Заземлено», включить выключатель. Снять пе-

редние панели ОМВ и КО проверяемого шкафа . Последовательно измерить сопротивление между плитой заземления разъединителя и нижними выводами КДТН (кабельное подключение) фаз A, B и C в каждом шкафу секции, как показано на рис. 26 .

Значение переходного сопротивления этого участка должно быть R \leq 65 мкОм .

Рис. 26. Измерение переходного сопротивления между плитой заземления разъединителя и нижними выводами КДТН шкафа

5.1.1.2. Измерение переходного сопротивления между кабельным подключением смежных шкафов (пофазно)

В каждом шкафу секции установить разъединитель в положение «Включено», включить выключатель . Снять передние панели КО двух смежных проверяемых шкафов . Измерить сопротивление между нижними выводами КДТН

фаз A этих шкафов, затем фаз B и C, как показано на рис. 27 . Выполнить эти операции для всех смежных шкафов секции.

Значение переходного сопротивления этого участка должно быть R \leq 140 мкОм .

Рис. 27. Измерение переходного сопротивления между кабельными подключениям смежных шкафов

5.1.2. Испытание главных цепей напряжением промышленной частоты

5.1.2.1. Проверка изоляции сборных шин секции (выполняется перед вводом РУ в эксплуатацию)

В каждом шкафу секции поочередно заземлить кабель (см. п. 4.2.4), снять фасадную панель KO.

В каждом шкафу секции установить разъединитель в положение «Включено», включить выключатель.

Выполнить следующие действия для фазы А проверяемого шкафа:

- Демонтировать контакт жгута ОПН (см. рис. 28). Для этого:
- 1. Надеть штангу оперативную изолирующую ШО-15 на круглый выступ контакта до упора.

- 2 . Повернуть штангу по часовой стрелке до упора . При этом выступающий штырь штанги зафиксируется в крючке контакта .
 - 3 . Потянуть штангу на себя .
 - 4. Вытащить контакт.
 - Установить на фазу А специальный жгут из сервисного комплекта (рис. 29а);
 - Заземлить фазы В и С на клемму заземления шкафа;
 - Подать на фазу A испытательное напряжение 37,8 кВ в течение 1 мин (рис. 296).

Аналогично испытать фазы В и С.

Рис. 28. Демонтаж контактов жгутов ОПН

Рис. 29. Проверка изоляции относительно корпуса

5.1.2.2. Высоковольтные испытания фидера (могут выполняться без перерыва в питании потребителей секции)

Заземлить фидер проверяемого шкафа, снять фасадную панель кабельного отсека (см.п. 4.2.4). Установить в проверяемом шкафу разъединитель в положение «ЗАЗЕМЛЕНО», отключить выключатель. Подать высокое напряжение 37,8 кВ в течение 1 мин последовательно на фазы А, В и С шкафа по методике, изложенной в п. 5.1.2.1. При подаче напряжения на одну из фаз остальные фазы должны быть заземлены на клемму заземления шкафа. При этом проверяется:

- поперечная изоляция нижней части высоковольтного модуля;
- продольная изоляция ВДК высоковольтного модуля;
- изоляция датчиков тока и напряжения шкафа.

Перевести разъединитель в положение «ИЗОЛИРОВА-HO», выключатель включить . Подать высокое напряжение 37,8 кВ в течение 1 мин последовательно на фазы А, В и С проверяемого шкафа по методике, изложенной в п. 5.1.2.1. При подаче напряжения на одну из фаз остальные фазы должны быть заземлены на клемму заземления шкафа. При этом проверяется:

б

- поперечная изоляция верхней части высоковольтного модуля;
- продольная изоляция разъединителя относительно плиты заземления;
- продольная изоляция разъединителя относительно сборных шин.

5.1.2.3. Проверка воздушного промежутка

разъединителя (проверка при вводе в эксплуатацию)

Установить во всех шкафах секции (кроме проверяемого) разъединитель в положение «Включено», включить выключатель. Заземлить фазу А одного из этих шкафов жгутом из сервисного комплекта, как показано на рис. 30.

В проверяемом шкафу установить разъединитель в положение «ИЗОЛИРОВАНО» (указано стрелкой) и подать на фазу А высокое напряжение 37,8 кВ в течение 1 мин . При

этом испытывается промежуток разъединителя по фазе А в проверяемом шкафу.

Аналогично проверить промежуток разъединителя по фазам В и С этого шкафа, заземляя соответственно фазы В и С другого шкафа секции (фактически заземляя соответствующую фазу сборных шин).

Проверить по этой методике промежутки разъединителя всех шкафов секции .

Рис. 30. Проверка воздушного промежутка разъединителя

5.1.3. Проверка кабелей повышенным напряжением

В проверяемом шкафу заземлить кабель, снять фасадную панель кабельного отсека (см. π . 4.2.4). Установить в испытуемом шкафу разъединитель в положение «ИЗОЛИРОВАНО», выключатель отключить.

Для проверки кабелей повышенным напряжением необходимо вытащить из резиновых изоляторов 1 контакты 2, подсоединенные к жгутам ОПН 3, с помощью штанги ШО-15, как показано на рис. 28. Затем с помощью предварительно проверенного штатного указателя высокого напряжения 4 убедиться в отсутствии высокого напряжения на всех фазах шкафа (см. рис. 31)

Рис. 31. Демонтаж контактов и проверка отсутствия высокого напряжения на кабеле

Подсоединить к кабельным приёмникам всех фаз проверяемого шкафа жгуты из сервисного комплекта. Фазы В и С заземлить, подсоединив клеммы соответствующих жгутов к клемме заземления шкафа, а на фазу А подать испытательное напряжение (постоянное или сверхнизкой частоты, в соответствии с требованиями производителя

кабеля или нормативных документов в части величины повышенного напряжения и продолжительности его приложения), как показано на рис. 32 . Аналогично проверить фазы В и С, заземлив при этом остальные две фазы . Проверить повышенным напряжением кабели во всех шкафах секции .

Рис. 32. Проверка кабеля повышенным напряжением

ВНИМАНИЕ! ПОСЛЕ ВЫПОЛНЕНИЯ ОПЕРА-ЦИИ НЕОБХОДИМО УБЕДИТЬСЯ В ТОМ, ЧТО:

Кабели подсоединения ОПН, защитные колпачки на ОПН и изоляционном колпаке расположены штатным образом (см. рис. 7).

5.2. Сервисные операции со вторичными цепями

Вторичные цепи шкафа не требуют проведения сервисных операций в течение срока службы . Для контроля состояния вторичных цепей необходимо осуществлять периодические проверки .

5.3. Проверки

Для контроля состояния вторичных цепей рекомендуется осуществлять проверку релейного отсека раз в два года. В случае возникновения неисправностей как в первичных, так и во вторичных цепях, они будут обнаружены при помощи функций самодиагностики и доступны для анализа как в местном, так и в дистанционном режиме. Для проверки в местном режиме:

- открыть панель релейного отсека;
- проверить индикацию на модуле управления должен гореть зеленый индикатор «READY» («ГО-ТОВ») и не гореть красный индикатор «MALFUN» («НЕИСПР»).
- в случае обнаружения неисправности необходимо обратиться в ближайшее региональное представительно Таврида Электрик.

Следует учесть, что зеленый индикатор «READY» («ГОТОВ») не будет гореть, если блокировочная рукоятка находится в положении «ВВ отключен и заблокирован».

Датчики и трубки дуговой защиты не требуют обслуживания в течение срока службы КРУ.

5.4. Замена оборудования

Монтаж и пусконаладка секции описана в «Инструкции по монтажу и пусконаладке» .

6. ТЕКУЩИЙ РЕМОНТ

Секции РУ TER_Sec10_Etalon_1 не содержат компонентов, требующих периодического ремонта в течение срока службы.

7. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА И ЗАМЕНА ОТКАЗАВШЕГО ОБОРУДОВАНИЯ

7.1. Гарантийные обязательства

7.1.1. Гарантийный срок

Гарантийный срок хранения и эксплуатации указан в паспорте, который поставляется вместе с продуктом.

7.1.2. Гарантийные условия

Гарантийные обязательства прекращаются в следующих случаях:

- истечение гарантийного срока хранения и эксплуатации:
- нарушение пломб на корпусе коммутационного модуля, электронного модуля управления и комбинированных датчиков тока и напряжения;
- выработка коммутационного или механического ресурса коммутационного модуля;
- нарушение условий или правил хранения, транспортирования, монтажа или эксплуатации.

7.1.3. Территория действия гарантии

Гарантия распространяется на территории России, Белоруссии, Казахстана, Таджикистана, Кыргызстана.

7.1.4. Косвенный ущерб

Изготовитель не несёт ответственности за косвенный ущерб, связанный с приобретением и использованием изделия.

7.1.5. Рекламации

Рекламации и предложения по улучшению качества продукции и услуг следует направлять в ближайшее регио- нальное представительство «Таврида Электрик».

7.2. Замена отказавшего оборудования

Все замены отказавшего оборудования производятся в присутствии представителей технико-коммерческого центра «Таврида Электрик» .

7.2.1. Замена коммутационного модуля шкафа

ВНИМАНИЕ! ПЕРЕД НАЧАЛОМ ВЫПОЛНЕ-НИЯ ОПЕРАЦИИ НЕОБХОДИМО УБЕДИТЬСЯ В ТОМ, ЧТО:

Разъединитель находится в положении «ЗАЗЕМЛЕНО», выключатель включен.

При работах на основном и резервном вводе кабель заземлен со стороны вышестоящей подстанции.

Выполнить следующие операции:

- 1. Включить выключатель (рис. 33).
- 2 . Убедиться, что вид мнемосхемы соответствует приведенному на рис. 33: выключатель включен, разъединитель заземлен, рукоятка в положении «Включение ВВ разрешено» .
- 3 . Вставить спецключ в замок панели релейного отсека и повернуть его против часовой стрелки до открытия панели (рис. 33) .
- 4 . Откинуть панель наверх до автоматической фиксации (рис. 33) .
- 5. Одновременно сместить рычажки левого и правого фиксаторов горизонтальной балки, разделяющей релейный отсек и ОМВ к середине шкафа до упора и снять ее (рис. 33).

Рис. 33. Подготовка к снятию передней панели ОМВ для извлечения МВ из шкафа

Рис. 34. Снятие передней панели ОМВ

- 6. Снять рукоятку, вывинтив винт ее крепления к МВ (рис. 34).
- 7 . Приподнять панель ОМВ и, придерживая ее одной рукой, повернуть и снять с креплений (рис. 34) .
- 8. Отсоединить с помощью отвертки WAGO два провода от разъема XT1 модуля высоковольтного (рис. 35).
- 9. Демонтировать жгуты заземления основания и плиты заземления разъединителя модуля высоковольтного, вывинтив крепеж в трех местах, указанных стрелками (рис. 35).
- 10. Снять 4 болта крепления основания модуля высоковольтного к поворотным кронштейнам шкафа (рис. 35).
- 11 . Снять резиновую заглушку для фазы A на корпусе MB, используя штангу UO-15 (рис. 35) .

- 12. С помощью предварительно проверенного штатного указателя напряжения убедиться в отсутствии высокого напряжения на фазе A (рис. 35).
- 13. Торцевым ключом отвинтить гайку крепления вывода МВ к шине КДТН, снять 3 тарельчатых шайбы и одну плоскую (рис. 35).
- 14 . В той же последовательности проверить отсутствие напряжения и снять крепеж по фазам В и ${\sf C}$.
- 15 . Установить рукоятку и отключить выключатель, повернув рукоятку по часовой стрелке на 90° в положение «ВВ отключен и заблокирован» (рис. 35) .
 - 16 . Вытащить МВ из шкафа (рис. 35) .

Установку модуля высоковольтного в шкаф выполнить в обратном порядке.

7.2.2. Замена комплекта комбинированных датчиков тока и напряжения шкафа

Демонтаж трехфазного комбинированного датчика тока и напряжения VCS_Etalon_2 производится в следующем порядке:

- 1. Заземлить кабели шкафа, открыть фасадную панель кабельного отсека и открепить кабели от нижних выводов КДТН.
- 2. Демонтировать МВ шкафа в соответствии с указаниями п. 7.2.1. На рис. 36а показан вид шкафа после проделанных операций. Верхние и нижние выводы шин КДТН всех фаз свободны.
- 3 . Демонтировать фасадную, две боковые и заднюю металлические крышки, закрывающие провода и жгуты на основании OMB .
- 4. На рис. 366 показан вид ОМВ после демонтажа крышек. Отсоединить от интерфейсного модуля (указан стрелкой) все жгуты.
- 5 . Вывинтить винты креплений КДТН всех фаз и вынуть их из шкафа (рис. 36в) .
- 6. Вывинтить винты крепления интерфейсного модуля и снять его.

a

Рис. 36. Демонтаж трехфазного комбинированного датчика тока и напряжения

7.2.3. Замена модуля управления шкафа

Для замены модуля управления необходимо открыть панель релейного отсека, как описано в **п. 7.2.1**, отключить автомат оперативного питания и выполнить следующие действия (рис. 37):

- 1 . С помощью отвертки WAGO отсоединить провода от разъемов X1...X3 модуля управления .
- 2 . Отсоединить разъемы подходящих к модулю управления жгутов .
 - 3. Отсоединить провод заземления модуля управления.

- 4 . Вывинтить невыпадающие винты, которые крепят горизонтальную перегородку с закрепленным на ней модулем управления к кронштейнам шкафа .
- 5 . Выдвинуть перегородку с модулем управления и вынуть её из шкафа .
- 6 . Вывинтить крестовой отверткой четыре винта крепления модуля управления к перегородке .
 - 7. Снять модуль управления.

Монтаж модуля управления выполнить в обратном порядке.

Рис. 37. Демонтаж модуля управления

7.2.4. Замена панели управления шкафа

Для замены панели управления необходимо открыть панель релейного отсека, как описано в п. 7.2.1 .

Рис. 38. Снятие панели управления шкафа

Затем выполнить следующие действия (рис. 38):

- 1. Отключить автомат оперативного питания.
- 2. Отсоединить от фитингов панели управления трубки, снять разъем, подходящий к панели.
- 3 . Вывинтить четыре винта крепления панели управления .
- 4. Снять панель.
- 5. Для того, чтобы вернуть панель релейного отсека в исходное состояние, нужно нажать на фиксатор и опустить панель вниз, придерживая рукой. При этом нужно следить за тем, чтобы трубки и жгуты укладывались в отсек без изломов.

Монтаж панели выполнить в обратном порядке .

8. УТИЛИЗАЦИЯ

Продукт не требует никаких специальных мер по утилизации после окончания срока службы, и не представляет опасности для окружающей среды и здоровья людей после утилизации.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

эл. почта: tdv@nt-rt.ru || сайт: http://teks.nt-rt.ru